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Abstract
We study chaotic eigenfunctions in wedge-shaped and rectangular regions
using a generalization of Berry’s conjecture. An expression for the two-point
correlation function is derived and verified numerically.

PACS numbers: 03.65.−w, 05.45.Mt

1. Introduction

According to Berry’s conjecture [1], chaotic eigenfunctions behave locally like random
superpositions of plane waves with wave vector k, where k = (1/h̄)

√
E − V . This description

is consistent with random matrix theory. The Gaussian random wave model does not account
for the localization properties of eigenfunctions, such as scarring [2] and weak quantum
ergodicity [3]. In particular, for quantum billiards with Dirichlet boundary conditions, the
wavefunction must vanish at the boundary, and thus no longer looks random in its vicinity. For
straight boundaries, the problem can be solved by reducing the set of available plane waves
to those which are antisymmetric with respect to reflection across the wall, thereby ensuring
a zero value along that boundary; see Berry [4]. If, for instance, the boundary is given by the
line y = 0, the chaotic wavefunction will be composed of a seemingly random combination
of plane waves of the form sin(kyy) cos(kxx + φ) where k2

x + k2
y = k2 and φ is a random phase

shift. Bies and Heller [5] discuss similar boundary effects in soft potentials.
Some criteria for unconfined random waves appear to be well satisfied by eigenfunctions

of chaotic billiards. McDonald and Kaufman [6] and McDonald [7] checked for random
nodal patterns, Gaussian statistics and Bessel function correlations. In their original work
on the stadium, these authors emphasized the qualitative appearance of nodal lines in the
eigenfunctions. The nodal lines appear to wander randomly throughout the billiard, which
is indicative of an isotropic distribution of local wave vectors. Furthermore, they found the
wavefunction statistics to be Gaussian. However, the correlation function is not a Bessel
function for a general billiard.
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We first generalize Berry’s boundary-adapted form of the Gaussian random wave model
to wedge-shaped regions. The case of a 90◦ angle is immediately solved: one just
antisymmetrizes with respect to reflections in both x and y. The simplest non-trivial case
consists of a wedge with an opening angle of 60◦. We focus on this example in what follows,
although our method extends to all opening angles of π/n radians, where n is a positive integer.
We first determine the right boundary-adapted plane wave basis. The two-point correlation
function can be used to compare our model to numerically generated chaotic eigenstates. For
Gaussian random waves in free space, the latter is known to give

〈ψ(x)ψ̄(x′)〉 = J0(|x − x′|) (1)

where the average is taken over a set of eigenstates. As we shall see, the two-point correlation
function for 60◦ wedge again reduces to a sum of Bessel functions. Our numerically generated
ensemble of wavefunctions is compared to this form of the correlation function, including the
interference effects of two or more Bessel functions.

Our second type of billiard consists of two semi-infinite parallel lines at x > 0, y = ±a/2,
which are connected by a perpendicular wall at x = 0. The wavefunction can be made to
vanish on the back wall by antisymmetrizing it with respect to the y-axis. The parallel walls
are not so readily handled. The antisymmetrization procedure extends over an infinite periodic
array of such lines a distance a apart. The two-point correlation function will be composed
of an infinite sum of Bessel functions. Since the latter diminish rapidly with distance, only
the nearest neighbours contribute, allowing us to compare our formula with its numerically
determined value.

2. The two-point correlation function

2.1. The wedge

We first look for the properly antisymmetrized wavefunctions. Let

ψ(x) =
∫

dθaθ e−ikθ ·x+iδθ (2)

denote a random sum of plane waves. Here kθ = k cos θ x̂ + k sin θ ŷ, the aθ are independent
Gaussian distributed random variables and the δθ are independent uniformly distributed random
phase shifts. Let ψ̃(x) denote the desired boundary-adapted version of ψ(x). Since ψ̃(x)

vanishes on the boundary of the wedge, it can be extended to a fictitious wavefunction living
in the whole plane by reflecting antisymmetrically across either boundary. To obtain ψ̃(x), we
let R1 denote reflection with respect to one of the lines bounding the wedge and R2 reflection
with respect to the other line. We would like to antisymmetrize ψ(x) with respect to both of
these reflections. The projection operator (1/4)(1 − R1)(1 − R2) does not work, however,
because R1 and R2 do not commute. Instead, we must resort to the following group-theoretical
construction. Let R3 denote the reflection with respect to the line that passes through the vertex
of the wedge and meets the two edges of the wedge at a 60◦ angle. The product R1R2 of
the two reflections R1 and R2 is a rotation through 120◦ centred on the vertex, and R2R1 is
the opposite rotation. Thus, the set 1, R1, R2, R3, R1R2, R2R1 forms a representation of the
dihedral group C3. It is now easy to see that ψ̃(x) transforms under the one-dimensional
representation of C3 that assigns a character of −1 to the reflections and 1 to the rotations. Put
another way, the problem of going from ψ(x) to ψ̃(x) is that of projecting onto this irreducible
representation of C3. Formally, this transformation is expressed as [8]

ψ̃(x) = 1√
6

∑
A∈C3

χ(A)Aψ(x). (3)
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Here, A denotes the group elements 1, R1, R2, R3, R1R2 and R2R1, and the character is
given by χ(R1) = χ(R2) = χ(R3) = −1 and χ(1) = χ(R1R2) = χ(R2R1) = 1. The
normalization factor of 1/

√
6 is chosen to ensure that the two-point correlation function gives

the free-space result far away from the wall. If we then restrict ψ̃(x) to the wedge-shaped
region, we obtain the required boundary-adapted sum of plane waves.

Now that we have an explicit expression for ψ̃(x), we can use it to calculate the two-point
correlation function C(x, x + r) = 〈ψ̃(x) ¯̃ψ(x + r)〉. The correlation function is a sum of 36
terms of the form

〈χ(A)Aψ(x)χ(B)Bψ̄(x + r)〉 = χ(A)χ(B)

∫
dθ e−ikθ ·(Ax−Bx)+ikθ ·Br (4)

= χ(A)χ(B)

∫
dθ eikρcos(θ−θ0) (5)

= χ(A)χ(B)J0(kρ). (6)

Here ρ = |Ax − B(x + r)|, that is, the distance from x + r to B−1Ax. The correlation function
becomes

C(x, x + r) = 1

6

∑
A,B∈C3

χ(A)χ(B)J0(kρB−1A) (7)

=
∑
C∈C3

χ(C)J0(kρC−1) (8)

= J0(kr) − J0
(
kρR1

) − J0
(
kρR2

) − J0
(
kρR3

)
+ J0

(
kρR1R2

)
+ J0

(
kρR2R1

)
. (9)

In the second line, we replaced B by AC. The sum over A then becomes trivial, since
χ(A)χ(B) = χ(A)χ(A)χ(C) = χ(C). In the last line, ρA denotes the distance from x + r
to Ax.

This formula predicts that the two-point correlation function should display the
interference of Bessel functions centred at all the points given by applying the group
transformations on x. Far from the boundary, equation (7) reduces to the single Bessel function
J0(kr), the value that it would have if no boundary were present. However, the interference
is pronounced near the boundary, and more especially near the vertex of the wedge.

2.2. The rectangular corridor

In the case of the rectangular corridor, the back wall and the semi-infinite walls need to
be handled separately. The wavefunction at x in the x < 0 half-plane is obtained by
reflecting about the y-axis. To extend the wavefunction in the y direction, we reflect it
with respect to the wall at y = a/2. By repeating this process for all y = (1 + 2m)a/2 where
m = {. . . ,−1, 0, 1, . . .}, the whole plane is tiled with positive or negative copies of ψ(x).

Mathematically, the process by which ψ̃(x) is obtained is as follows. The initial billiard
is placed on an infinitely long cylinder of circumference 2an. Our initial x-axis is now parallel
to the axis of the cylinder, whereas the y-axis is wrapped around the cylinder and truncated
at y = (1 ± 2n)a/2. The wavefunction is first reflected across the y-axis. Therefore, the
antisymmetrization in the x direction transforms as a one-dimensional representation of the
reflection group Z2. Rotations by multiples of 2a should give back the wavefunction, while
reflections about any of the lines parallel to the x-axis give its negative version. We thus
obtain a representation of the dihedral group Cn. It is now clear that on the cylinder, ψ̃(x)
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Figure 1. The cone billiard.

transforms under the one-dimensional representation of Cn ⊗ Z2 that assigns a character of
−1 for reflections and 1 for rotations. This time the transformation is given by

ψ̃n(x) = 1√
4n

∑
A∈Cn⊗Z2

χ(A)Aψ(x). (10)

As in the case of the wedge, the normalization factor is found by requiring that the correlation
function give J0(kρ) far away from the wall.

The correlation function is given by

C(x, x + r) = lim
n→∞

1

4n

∑
A,B∈Cn⊗Z2

χ(A)χ(B)J0(kρB−1A) (11)

= lim
n→∞

∑
C∈Cn⊗Z2

χ(C)J0(kρC−1). (12)

However, J0(kρC−1) → 1/
√

kρC−1 for large ρC−1 . Hence, only the Bessel functions centred at
nearby points contribute, and the correlation function remains finite as we take the n → ∞
limit.

3. Numerical results

Here we apply the theory to check further the properties of random waves in billiard systems.
There are some obvious and some more subtle modifications of random wave behaviour
known in closed chaotic billiards. The wavefunction must vanish on the boundary, and
scarring affects some states in a non-random way [9]. The theory given here suggests new
correlations which ought to be checked in chaotic systems. As we incorporate more about
a specific billiard geometry into our correlation functions, we are probing the properties of
waves which are ‘as random as possible’ within the constraints, such as a wedge boundary
being present. In checking the numerics of a billiard such as the cone or stadium, we are
really asking whether the eigenstates are truly random but for the constraint of interest, say a
wedge boundary. Naturally this cannot be strictly true, since there are more constraints that
we have not included. At the end of this strategy comes a tautology: if, in a closed billiard we
incorporate all the constraints, we have only the eigenstates left, as the only waves which are
consistent with all the constraints!
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Figure 2. (a) Experimental correlation function for x = (0.3, 0), on the symmetry axis through
the centre of the cone. The grid is a square of side 0.129, or about eight wavelengths, centred on x.
(b) Same as (a) for x = (0.3, 0.153), near the upper straight edge of the cone.
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Figure 3. (a) Theoretical correlation function for x = (0.3, 0) (same grid as in figure 2(a)).
(b) Same as (a) for x = (0.3, 0.153) (same grid as in figure 2(b)).

3.1. The wedge

To validate our expressions for ψ̃(x) and C(x, x + r), we generated an ensemble of 500
eigenstates near k = 200 for a 60◦ wedge which has been closed off by a semicircle; see
figure 1. The eigenstates were found using the Boundary Integral Method. Our cone-shaped
billiard has a circle diameter equal to 1, which is about 32 wavelengths across. The Poincaré
section indicates that this billiard is chaotic. In figure 2, we show C(x, x + r) for (a) x on the
symmetry line through the centre of the billiard and (b) for x placed within a wavelength of
one of the edges. Both figures 2(a) and (b) display the expected interference, but the latter
is especially pronounced in figure 2(b). Note that since x is on the symmetry line, only even
states contribute to figure 2(a).

For comparison, figure 3 displays the theoretical predictions for the two-point correlation
functions of figure 2. Both plots are in good agreement with their numerical equivalent. In
particular, the interference pattern of figure 2(b) is reproduced in figure 3(b). However, the
angular oscillations are much more pronounced in the theoretical plots, suggesting that an
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Figure 4. (a) Angular average of C(x + r, x) versus r for x = (0.3, 0) (same grid as in figure 2(a)).
Solid line, Bessel function J0(kr); ×, numerical data. (b) Same as (a) for x = (0.3, 0.153) (same
grid as in figure 2(b)).

unaccounted-for smoothing process is at work in the numerical experiment. We compared the
error quantitatively using∫

d2r|Cnum(x, x + r) − Cth(x, x + r)|2∫
d2rCth(x, x + r)2

. (13)

We obtained 0.52 for figure 2(a) and 0.15 for figure 2(b). The discrepancy in the predicted
and experimental values is expected due to the difference in the angular nodes, and appears to
be more pronounced far away from the billiard walls.

In figure 4, we take the angular average of the correlation functions of figure 2. As was
found by Li and Robnik [10], figure 4(a) resembles the Bessel function J0(kr). This should
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Figure 5. The stadium billiard.
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Figure 6. (a) Experimental correlation function for x = (0.3, 0.3), the midpoint of the square part
of the stadium. The grid is a square of side 0.140, or about eight wavelengths, centred on x. (b)
Same as (a) for x = (0.0223, 0.2), near the back wall. (c) Same as (a) for x = (0.0255, 0.0255),
near the lower-left corner. (d ) Same as (a) for x = (0.2, 0.0255), near the bottom side of the
stadium.
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Figure 7. (a) Theoretical correlation function for x = (0.3, 0.3) (same grid as in figure 6(a)).
(b) Same as (a) for x = (0.0223, 0.2) (same grid as figure 6(b)). (c) Same as (a) for
x = (0.0255, 0.0255) (same grid as figure 6(c)). (d ) Same as (a) for x = (0.2, 0.0255) (same grid
as figure 6(d )).

be the case whenever boundary effects contribute equally from all sides. Figure 4(b) also
approximates a Bessel function because, as can be seen from figure 2(b), the boundary effects
affect only a small range of angles and, furthermore, are independent of radius.

3.2. The rectangular corridor

Once again, we took an ensemble of 500 eigenstates near k = 200, this time for a quarter
stadium with an end cap radius of R = 0.6 and straight length l = 1.2 (about 20 wavelengths
wide), see figure 5. The numerical correlation function is shown in figure 6 for x (a) on the
symmetry line through the centre of the billiard, (b) within one wavelength of the top wall,
(c) within one wavelength of a corner and (d ) within one wavelength of the back wall. As
expected, only the Bessel functions which are less than a few wavelengths away contribute to
C(x, x + r).

The numerical correlation function of figure 6 was compared to the theoretical prediction
of figure 7 using equation (13). Here, only the first few terms were kept in Cth(x, x + r).
We obtain 0.55 for figure 6(a), 0.23 for figure 6(b), 0.03 for figure 6(c) and 0.24 for
figure 6(d ), in agreement with our results for the cone billiard.
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4. Conclusion

We have successfully extended the boundary-adaptedGaussian wave model to a wedge-shaped
region with opening angle 60◦. Our technique is readily generalized to any opening angle
of the form π/n for n integer; one merely replaces the group elements of C3 with those
of the dihedral group Cn. We also solved the case of the semi-infinite rectangular corridor.
It is our hope that these results will stimulate more work on boundary effects in arbitrarily
shaped billiards; in particular, it would be desirable to compare our semiclassical expression
of Hortikar and Srednicki [11].
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